超広帯域アンプを達成する分布形増幅器の設計法と性能最適化

1. 序 文

マイクロ波帯からジ波帯に亘る分布形増幅器(目標帯域 30GHz)の設計方法について説明する。 先ず分布増幅器を設計するための一連の基本式を表記し、所要の性能を達成するための関 係式を導く。

適用する増幅素子 [Chip型 HEMT]の基本パラメータ [S パラメータ及びノイス・゙パラメータ]は、分布増幅

器の動作帯域を十分 にカバ-することが必 要になるので、前報 の「各種パラメータの変 換・導出」結果を適用 して、データシートに記載 された周波数範囲を 越えて、所要の帯域 の基本パラメータを近似 的に導出する。 次いで Excel の自動

計算シートを活用してアンプの入出力回路の最良条件を導き、その結果を反映した基本増幅回路 を設計する。最終的には、分布増幅器の回路の最適化を図り、ゲイン、NF、Return Loss (VSWR) の諸特性を目標性能に近づけて最適設計を完了する。

良好な性能の分布増幅器を達成するポイントは、入出力回路の最良条件を導出する手順が 輻輳・重複していることに注意して、それを旨く組み立てることにある。

- 2. 分布増幅器の設計手順とその概要
- (1) 適用する増幅素子 [HEMT] の等価回路(デバイス・パラメータ)を表記し、その等価回路の入 出力容量 [ゲート入力容量: C_{gs}/ドレイン出力容量: C_{ds}] をアンプの入出力回路 [高インピーダ ンス分布定数線路 Z_{sg}、Z_{sd}を用いた] に組み込んで [融合一体化]、ユニット・アンプ(単位アンプ 回路)の入出力回路が所定の特性インピーダンス Z_{TG}、Z_{TD} [入出力ポートのインピーダンスに整合す

る、通常は 50Ω] を有する ように新たな分布定数線路 を合成する。

(2) 分布増幅器のユニト・アンプの合成入力線路、合成出力線路を 伝播する信号の到達時間を 一致させる必要があり、両合成線路の線路長Ig、Idと当該

線路のカットオフ周波数 f_{cg} 、 f_{cd} の間に $I_g/f_{cg} = I_d/f_{cd}$ の関係を持たせて両線路の位相回転を一致させる。

- (3) 適用する増幅素子 [本設計では Chip 型 HEMT の NE321000 を使用]の基本パラメータ (S パ ラメータ / ノイズパラメータ) を前報の結果を活用して、データシートを越える所要の帯域 [高域側] (S パラメータは 30GHz ~ 60GHz、ノイズパラメータは 26GHz ~ 40GHz)について近似的に導出する。
- (4) 上記(1)、(2)の関係式を適用した自動計算シート [Excel ファイル] を利用して、入力回路、
 出力回路の合成[特性] インヒ[°]-タ[°]
 - ロス Z_{GT}、 Z_{DT} が 50 Ω となる線路条 件の組合せ [I_g、 Z_{sg}]、 [I_d、 Z_{sd}] を導き、高 $(\nu t^{\circ} - f^{\circ} \nu \lambda Z_{sg}, Z_{sd} e)$ 横軸に、縦軸に I_g/ f_{cg}、 I_d/ f_{cd} の f° 77を描いて、これらの組合 せの中から I_g/ f_{cg} = I_d/ f_{cd} の 基本要件を満たす線路条件の 組合せ [I_g、 Z_{sg}]、 [I_d、 Z_{sd}]を見 出す。

- (5) 上記基本要件を満たす選定された高インピーダンス線路 Z_{sg}、Z_{sd}に対して更に、合成インピーダ ンス Z_{GT}=50Ω、Z_{TD}=50Ωを達成する線路長 I_g、I_dを導く。
- (6) 上記(5)の高インヒ[°]-ダンス線路の最適条件を適用した分布増幅器の基本回路を SNAP の回 路ェディタ上で作成してネットリストし、S パラメータ解析を 2GHz~40GHz の範囲で行うと、分布増 幅器の性能を確認できる。
- (7) 最終ステージとして、基本回路の回路構成要件 [高インピーダンス線路の特性インピーダンス Z_{sg}、
 Z_{sd}、線路長 I_g、I_dや終端抵抗 R_g、R_d]を^{n^o}ラメータ (変数)として、SNAP の最適化機能を
 活用して、分布増幅器の性能 [平均ゲイン、帯域内のゲイン偏差等] 最良化を達成する。
 - 3. アンプ設計の具体的内容
- 3.1 分布増幅器を設計する基本関係式の纏め
- (1) 分布増幅器のユニット・アンフ[°](図 4)は HEMT のケ^{*}ート側に接続される高インヒ[°]-タ^{*}ンスの分布定数線路(特性インヒ[°]-タ^{*}ン ス: Z_{sg}、線路長: I_g)と、ト^{*}レイン側に接 続される高インヒ[°]-タ^{*}ンスの分布定数線 路(特性インヒ[°]-タ^{*}ンス: Z_{sd}、線路長: I_d) で構成される。

 (2) 入力回路においては、 高インピーダンス線路 Z_{sg}
 に HEMT のゲート入力
 容量 C_{gs} を一体化し
 て(図 5) 新たな合
 成(特性) インピーダンス
 Z_{TG} を形成する。
 出力回路においては高イ
 ンピーダンス線路 Z_{sd} に HEMT
 のドレイン出力容量 C_{ds} を

一体化して新たな合成イ ンピーダンス線路 Zm を形成 する。

このとき両合成インヒ[°] - ダンス Z_{TG}、Z_{TD}が共 に 50Ωになるように高インヒ[°] - ダンス線路 の条件(特性インヒ[°] - ダンス Z_{sg}、Z_{sd}と線路 長 I_g、I_d)を選定[(201)、(202)の関 係式を利用]する。

 (3) 上記の入出力回路の高インピーダンス 線路条件の組合せの内から、 Ig/fcg=Id/fcd [(301)式]を両立 させる高インピーダンス線路の最適条 件を見出す。(図 6) (1) Z_{TG} = 50 Ωを達成する(Z_{st}: I_t)の組合わせを(201)の式を適用して見出す
 (2) Z_{TG} = 50 Ωを達成する(Z_{st}: I_t)の組合わせを(202)の式を適用して見出す
 (3) 上記の組合わせの内から次式(301)を満足する組合せを選び出す

長さしの入力線路Z_{TG}の位相回転と、長さしの出力線路Z_{TD}の位相回転を 等しくする必要が有り、次式が成立する

=	I _d	 (301)
f _{os}	f_{od}	. ,

分布増幅器の設計手順

f =	1	1	(302)
.ot	π	$\int L_{Lg} (C_{Lg} + C_{gs})$	
f -	_1	1	(303)
- ¹⁰¹	π	$L_{Ld}(C_{Ld}+C_{ds})$	57

ここで入力線路長I。と出力線路長I。に対する夫々の総インダクタンスLue、Lueと総容量Cue、Cudは次式で表せる

$L_{Lg} = I_{g} \; L_{Ug}$	(311)
$\mathbf{C}_{Lg} = \mathbf{I}_{g} \; \mathbf{C}_{Ug}$	(312)

 $L_{Ld} = I_d L_{Ud}$ ------ (321) $C_{Ld} = I_d C_{Ud}$ ------ (322)

Fig.6

3.2 適用する増幅素子の基本パラメータの周波数 範囲の拡張

前報 Report10 の「各種パラメータの変換と導出」 の結果を活用して、S パラメータを周波数 30GHz-60GHz の範囲で近似的に導き、さらにノイズ・パ ラメータ [最小雑音指数 NF/最小雑音指数を与え る電源インピーダンス Γ opt/等価雑音抵抗 Rn] を周 波数 26GHz-40GHzの範囲で近似的に導出し、

Fig.7

オリシ^{*} ナルのライフ^{*} ラリ・テ^{*} ータにこれらの新たなテ^{*}ータを付加した、新しいライフ^{*} ラリ [ImpWideNE321000.jft]を作成(図7)して、SNAP¥Library¥SParam¥NECに保存する。

- 3.3 分布増幅器ユニト・アンプの入出力回路の自動計算シートの活用
- [A] 入力回路の適合条件 [高インピーダンス線路の特性インピーダンス Zsg と線路長 Igの組合] 導出
- 入力回路を設計する自動計算シート(図 8)に、HEMTのデバイス・パラメータ の該当する定数[相互コンタブクタンス gmo、ゲート入力容量 Cgs 他]を 入力する。使用する基板のパラメ ータ[本設計では、GaAs 絶縁基 板を使用することを仮定して、 比誘電率 ε r=12.9 に選び、基 板の厚さ h と線路幅 w を変数 として、特性インピーダンス Zsg と実 効誘電率 ε eff を、Hammerstad の近似式な)を用して京特度に気気

			ڑ]	、力回路]		10	Fig 8
1		- 分布形増幅器の入力[回路の定数検討表			Ing.0	
No	Device Parameter	ene [mS]	L, (nH)	С _а , (р.F.)		光速:C[Gm/s]	π
		59.000	0.031	0.108	0.000	0.300	3.142
	高イナータンス線路 線路長:1g << 入g 「入_:線路波馬」	基板の比誘電率: 8,	基板の厚さ:h [mm]	線路幅:w[mm]	特性心だーゲンス: Z. [Ω]=6333)宗 但し、with の場合	線路の実効誘電率 : 8 ₄₁ =0.34gt	
		12.900	1.000	0.001	200.378	7242	
1	線諮長: I _a [mm]	合成確勝の特性インピーダ ンス:Z _{TG} [Ω]→(0.35)式	線路長しでのインタウタンス: Lu[nH]=(8.84-2)式	線路長しでの容量: Cut[pF]=(6.82-2)st	Cut Off Frequency : fog [GH2]+(0.37-2)gt	単位長当りのインダウダンス : Lug[nH]=(6.84=2)式	単位長当りの容量 :Cu [pF]=0.82=8)床
	0.120	43.618	0.216	0.005	64.369	1797.439	44.766
1	線路長: ig [mm]	合成確勝の特性インピーダ ンス:Z ₇₀ [Ω]=00.35)式	線路長Lでのインタウタンス: Lu[nH]=(6.84-2)式	線路長しでの容量: Cut[pF]=(6.82-2)式	Cut Off Frequency : f _{eg} [GHz]=(8.37-2)gR	単位長当りのインダウタンス : Lu_[nH]=05.84-23式	単位長当りの容量 :Cu [pF]=06.82-03式
	0.130	45.310	0.234	0.006	61.722	1797.439	44.766
1	線路長: ig [mm]	合成議題の特性イパーデ ンス:Ζ _{τα} [Ω]=8.35)式	線路長1,でのインタウタンス: Lu[nH+(6.84-2)式	線路長1,での容量: Cus [pF]=(6:82-8)式	Cut Off Frequency : f _{eg} [GHz]=0.37-2)gt	単位長当りのインダウタンス : L _{ux} [nH]=06.84-23式	単位長当りの容量 :Cu [pF]=66.82-23式
	0.140	46.928	0.252	0.006	59.361	1797.439	44.766
1	線路長: Ig [mm]	合成績勝の特性イバーダ ンス:Z ₇₀ [Ω]=8.35)式	線路長1,でのインダウカンス: LunnH+(6.84-2)式	線路長1,での容量: Cut [pF]=(6:82-2)式	Cut Off Frequency : f _{eg} [GHz]=(8.37-2)st	単位長当りのインダウタンス : L _{ug} [nH]=0.84-23式	単位長当りの容量 : Cu [pF]=6.82-2)床
1	0.150	48.480	0.270	0.007	57.236	1797.439	44.766
1	線路長: lg [mm]	合成績路の特性イバーダ ンス:Z ₇₉ [Ω]=(8.15)式	線路長1,でのイッオうサッス: L _{in} [nH]+(6.84-2)式	線路長Lでの容量: C _{Le} [pF]+(6:22-2)式	Cut Off Frequency : f _{eg} [GH2]=(8.37-2)gt	単位長当りのインダウタンス : L _{ug} [nH]=08.84-23式	単位長当りの容量 : Cu [pF]=(6.82-2)式
1	0.160	49.973	0.288	0.007	55.311	1797.439	44.766
1	線路長: [, [mm]	合成講師の特性インピーダ ンス:Z ₁₅ [Ω]=(0.35)式	線路長Lでのイパメウカリス: L_[nH]+(6.04-2)式	線路長しでの容量: Cup (pF)-(6.82-2)式	Cut Off Frequency : f _{ee} [GHz]=0.37-2)st	単位長当りのインタウタンス: Lu[nH]=684=2)式	単位長当りの容量 :Cu [pF]=(6.82-0)式
	0.170	51.411	0.306	0.008	53.555	1797.439	44.766

a a construction of the state o

の近似式を適用して高精度に算出]を選定して高インピーダンス線路の特性インピーダンス

 $Z_{sg} を導く。このとき線路長$ Ig をパラメータとして変化させ、合成インピーダンス Zrgが50 Ωになる前後の Zrg と線路のカットオフ周波数 fcg を算出しその結果を、横軸に線路長 Ig、両縦軸に合成インピーダンス Zrg とカットオフ周波数 fcg に選んでグラフ(図 9) を作成する。このグラフから Zrg=50 Ωの条件における線路長 Ig とカットオフ周波数 fcg を読取る。

- (2) 特性インピーダンスZsgを変化させた同様の計算シートを多数用意して、ZTG=50Ωを得る高インピ -ダンス線路の組合せ[特性インピーダンスZsgと線路長 Ig]を導出する。
- [B] 出力回路の適合条件 [高インピーダンス線路の特性インピーダンス Zsd と線路長 Idの組合] 導出

Fig.10

 (3) 同様に、HEMT のデバイス・パラメータの該 当する定数 [相互コンダクタンス gmo、 ドレイン出力容量 Cds 他] を入力す る。また、使用する基板のパラメー タを入力して高インピーダンス線路の 特性インピーダンス Zsdを導く。この とき線路長 Id をパラメータとして変 化させ、合成インピーダンス ZrD が 50Ωになる前後の ZrD と線路の

	分布形増幅器の出力回路の定数検討表						
No	Device Parameter	eng [mS]	L _e (nH)	C _{ss} [pF]		光速:C[Gm/s]	π
		59.000	0.023	0.047	0.000	0.300	3.142
	高化化ーダンス線路 線路長:1、<< 入。 「A :線路波長]	基板の比誘電率: ε,	基板の厚さ:h [mm]	線路幅:w[mm]	特性化化ーデンス: Z_[Ω]+(6.33)訳 但し、willhの場合	線路の実効誘電率 :8 ₄ =0.34成	
	Contraction of the	12.900	1.000	0.167	83.077	7.812	
1	線路長:L [mm]	合成結婚の特性イル ⁶ ーダ ンス:Z _{τ0} [Ω]=0.36武	線路長Ljでのイソデオリス: Lu_[nH]=(6.84-2)式	線路長1,での容量: C1.1(pF)+(6.82-2)式	Cut Off Frequency : f or [GHz]+(0.39-2);t	単位長当りのインタウダンス : Lu_[nH]=(6.04-0)式	単位長当りの容量 :Cu [pF]+(6.82-0)式
	0.210	47.864	0.163	0.024	93.732	774.015	112.146
1 線路長: L, L 0.215	線路長:L, [mm]	合成績路の特性イルでーダ ソス:Ζ _{το} [Ω]=(8.36)成	線路長しでのイバカウス: し、[nH]=(5.84-2)式	線路長1,での容量: Cus (pF)=(6.82-2)床	Cut Off Frequency : f og [GHz]=(8:38-2)st	単位長当りのインタウタンス : LufnH]=(8.84-2)式	単位長当りの容量 :Cu [pF]+(6.82-0)式
	0.215	48.240	0.166	0.024	92.272	774.015	112.146
4路長:	線路長: L, [mm]	合成結婚の特性イルページ ンス:Z _{τ0} [Ω]=0.30ま	線路長Lでのインメ゙タカンス: Lu[nH]=(5.84-2)式	線路長L,での容量: C _{L4} [pF]+(6.82-c)式	Cut Off Frequency : f or [GHz]+01:38-23st	単位長当りのインタウダンス : L_u[nH]=6.84=23式	単位長当りの容量 :Cu [pF]=(6.82-c)式
	0.220	48.607	0.170	0.025	90.862	774.015	112.146
1	線路長: L, [mm]	合成結婚の特性イルペーダ ンス:Z _{τ0} [Ω]=0.36)式	線路長Ljでのインメ゙ウャンス: Lug[nH]=(6.84-2)式	線路長1,での容量: C _{L4} [pF]+(6.82-8)式	Cut Off Frequency : f (GHz)=(8:39-2)gt	単位長当りのインタウタンス : Lu[nH]=(684-2)式	単位長当りの容量 :Cu [pF]+06.82-03式
	0.225	48.967	0.174	0.025	89.499	774.015	112.146
1	線路長: L [mm]	含成結婚の特性イルペーダ ンス:Z元 [Ω]=0.30武	線路長Ljでのインメ゙ウカンス: Lu_[nH]=16.84-2j式	線路長L,での容量: C _{L4} (pF)=(6.82-2)式	Cut Off Frequency : f	単位長当りのインタウタンス : Lu_[nH]=(684-2)式	単位長当りの容量 :Cu [pF]=06.82-23式
	0.230	49.318	0.178	0.026	88.181	774.015	112.146
1	線路長:L [mm]	古成績路の特性イル*ーダ ンス:Ζ _{το} [Ω]=(0.36)成	律路長Lでのイバデオンス: Lu[nH]=05.84-23式	線路長1,での容量: Cur[pF]=(6.82-0)式	Cut Off Frequency : f	単位長当りの1/タうタンス : LufnH)+(6.04-2)訳	単位長当りの容量:Cu [pF]+06.82-83武
	0.235	49.661	0.182	0.026	86.906	774.015	112146

デバイスハ^{*}ラメータを適用して線路長I_dと線路合成インピ^{*}ーダンスZ_{TD}を自動計算する 「出力回路]

 $hyht7周波数 f_{cd} を算出(図 10) しその結果を、横軸に線路長 I_d、両縦軸に合成インヒ[°]$ $-<math>f^{*}$ ンス **Z**TD と $hyht7周波数 f_{cd}$ に選んで f^{*} ラフを作成する。この f^{*} ラフから **Z**TD = 50 Ω の 条件における線路長 I_d と $hyht7周波数 f_{cd}$ を読取る。

 (4) 特性インピーダンス Z_{sd}を変化させた同様の計算シートを多数用意して、Z_{TD}=50Ωを得る高インピ -ダンス線路の組合せ [特性インピーダンス Z_{sd}と線路長 I_d]を導出する。

[C]入力線路の位相回転と出力線路の位相 回転を等しく [(301)式] する最終適合条件 の導出

 入力線路の組合せ [合成インピーダンス Z_{TG} =50Ωを与える特性インピーダンス Z_{sg}と線 路長 I_g] および出力線路の組合せ [合 成インピーダンス Z_{TD}=50Ωを与える特性イ ンピーダンス Z_{sd}と線路長 I_d] を、横軸に

高インピーダンス Z_{sg}、Z_{sd}を選んでグラ7(図11)に表し、位相回転を等しくする最終条件を 線路のカットオフ周波数 f_{cg}、f_{cd}が最大(分布増幅器の帯域を広げる)になる[即ち、特性イン

特性インビーダンス:Z_{sd}=83Ωの線路にHEMTのドレインを接続したときの、 線路長I₄と線路合成インピーダンスZ_{TD}並びに線路のCutoff 周波数f_{cd}

ピーダンス Z_{sg}、Z_{sd} が出来るだけ 大きくなる] 組合せを見つける。

(2) 本設計では、 $Z_{sg}=200\Omega$ に選び、

 $K_g = I_g / f_{cg}$ 、と $K_d = I_d / f_{cd}$ が等 しくなる $Z_{sd} = 83 \Omega$ に選定する。 次いで、 $Z_{sd} = 83 \Omega$ における線 路長 $I_d \epsilon^{n^\circ} j_{J-g}$ として変化さ せ、合成 $(\gamma t^\circ - g^\circ) \gamma_{\Lambda} Z_{TD}$ が 50 Ω になる前後の Z_{TD} と線路の j_{γ} /オ フ周波数 f_{cd} を算出しその結果を、

Fig.13

	分布増幅器の最適性能を得る為のIg/fgelg/fgを満たす、入出力回路の最適バラメータ(ZgZgIgIg)の計算表							
合成イルモデンス		1:2 _{cr} ≒500を与える入力回路		合成化化生产次:Zer年500を与える出力回路			KgキKdを与える(入力回路:Z_/,/t_) と(出力回路:Z_/,/t_)	
線路の特性イルトックス :Z【Ω】 (近候価)	線路長:I₌[mm]	Cut Off 周波数:f _{ra} [GHz]	K_=1_/t_ [mm/GHz]	鎮路長:L _i [mm]	Cut Off 周波数: f _{ed} [GHz]	K _i ələ/f _{ei} [mm/GHz]	10kas K _a	10kas K _e
51.0	9.6500	3.300	2.92424	42500	7.600	0.55921	4.660	-2.524
58.0	10 1 10		· ~ +	対なの単もい	L >> > ° L*			-16.378
70.0 I	$f_{cg} = I_{d} f_{cd}$	を実現す	る人力四	略の特性	E176-8	ンスL _{sg} と約	、哈夫lg、	-22.455
84.0 C	utoff 周波娄	女f _{cg} 並びし	に、出力し	回路の特	性インビータ	"ンスZ _{sd} と着	泉路長I _d 、	-25.661
100.0		C	utoff 周波	皮数f_tを導	拿出する			-27.675
116.0	0.3120	48.100	0.00649	01375	109.400	0.00126	-21.880	-29.007
132.0	0.2630	50,500	0.00521	01154	115.000	0.001 00	-22.833	-29.985
148.0	0.2270	52.300	0.00434	01000	119.000	0.00084	-23.625	-30.755
164.0	0.2020	53.400	0.00378	0.0885	121.700	0.00073	-24.222	-31.383
185.0	0.1760	54.600	0.00022	0.0772	124.400	0.00062	-24.917	-32.072
200.38	0.1600	55.300	0.00289	0.0703	126.000	0.00056	-25.386	-32.534
83.060				0.240	85.671	0.00280		-25.526
			Table 3					
入力線路の実効誘電率 : c 、・・・	出力線路の実効誘電率 : c 🖬 d		Table. 5					
7.242	7.812	入力回路	の特性イルーナッス:Z	= 200.38Ω	出力回路	の特性小犬ーがソス:ス	n= 83.08 Ω	
周波数:f(GHz)	自由空間長:λ.(mm)	鎮路長:l _a [mm]	鎮路波長:λ.[mm]	議路の電気長:0 e [deg]	编辞長:l _e (mm)	鐃踼波長∶λε [mm]	線路の電気長:0。 [det]	π
10.000	30.000	0.160	11.148	5.167	0.240	10.733	8.050	3.1 41 59
20.000	15.000	0.160	5.574	10.334	0.240	5.367	16.099	3.1 41 59
30.000	10.000	0.160	3.716	15.501	0.240	3.578	24.149	3.1 41 59
40.000	7.500	0160	2.787	20.668	0.240	2.683	32.198	3.1 41 59

横軸に線路長 Ia、両縦軸に合 成インピーダンス ZTD とカットオフ周 波数 fcd に選んでグラフ(図 12) を作成する。このグラフから ZTD=50Ωの条件における線 路長 Ia とカットオフ周波数 fcd を読 取る。

(3) Z_{TG}=50Ωを与える入力線路 の最終適合条件(Z_{sg}=200Ω の線路長 I_g=0.16[mm])と、 Z_{TD}=50Ωを与える出力線路

の最終適合条件 ($Z_{sd}=83\Omega$ の線路長 $I_d=0.24$ [mm]) とを適用しエット・アンプ を構成する。

(4) 回路エディタでユニット・アンプ を作成する際に、新規素子/理論部品群/電気長線路(位相角)を 適用して分布定数線路 [高入力インピーダンス線路] を適用するので、上記の入出力線路の 電気長を Excel (図 13) で前もって計算しておく。

3.4 分布増幅器の基本回路設計

[A] 回路設計のポイント

(1) 入力ポートから出力ポートに向けて前述のユニット・アンプを 4 段に縦列接続(図 14)する。一 見してユニット・アンプが並列に接続されているようにみえるが、分布形増幅器は入力信号を進行

波増幅するものであるから、入 力側回路は入力端から終端負 荷 Rgに向けて順番に接続され、 出力側は初端負荷 Rd から終端 の出力端に向けて順番に接続 される。

(2) 前記の入力線路における 信号の位相回転と出力線路に おける信号の位相回転が等し いと言うことは、各ユニット・アンプ の出力端において、前段から分

布定数線路で伝送されてきた信号と、該エット・アンプで増幅された信号出力が常に同相で加算 される必要がある理由に拠る。なお初段エット・アンプと終段エット・アンプの外側に接続される線 路の長さは夫々の線路長の半分の長さ Ig/2、Id/2 にする。 (3) 増幅素子のライブラリは素子値入力の参照ボタンから、先に保存し ておいた前述の [SNAP¥Library¥SParam ¥NEC¥Imp/SuperWideNE321000.jft]を引き当てる。こうする と分布増幅器の性能解析に必要な周波数帯域を十二分に覆う基本

[B] 性能解析について

することができる。

(1) ネットリスト出力をして、SNAP で S パラメータ解析「雑音設定(雑音 指数を計算)]を周波数2GHz~40(50)GHzの帯域に亘って行い(図

3.5 分布増幅器の性能最適化

[A] 分布増幅器の回路最適化設計

上記の基本回路の構成において、入力線路の 特性インピーダンス Zg、電気長 Ag [線路長 Igに 相当]、電気長 Agh [線路長 Ig/2 に相当]、 および出力線路の特性インピーダンスZd、電気長 Ad [線路長 Id に相当]、電気長 Adh [線路長 Id/2に相当]、さらに終端抵抗 Rg、初端抵

パラメータ [S パラメータ/ノイズ・パラメータ] を本分布増幅器の性能解析に供 表示式 Y軸 NF[PT1] 15)、その結果を表 < 示式から選んで増 X軸 掃引 幅器の利得 S21、 入出力のリターンロス S11、S22 並びに 雑音指数 NF とし Z軸 て表示(図16)す CI

> 分布增幅器 (2)

る。

の基本回路は、 平均利得は約 10dB、3dB 帯域は2GHz-約31GHzで、帯域内の利得 偏差が約±2dBの性能(図17)が得られ、 超広帯域のアンプを比較的容易に設計するこ とが出来る。

イズ関連の設定

抗 R_dを変数(図 18)として回路チュー=ング の構成を整える。

[B] 利得最適化

最適化の条件を(図19)のように設定し、 最適化を行った結果、平均利得(約)10dB、

[C] NF 及び利得平坦の両立の最適化

最適化条件を(図 21)のように設定し最適 化を行った。その結果、3dB 帯域 2GHz-32GHz、帯域内平均利得 10.3dB、利得偏差 ≦1dB、帯域内の雑音指数(約)NF≦3dB で 且つ入出力のリターンロス(約)S11≦-10dB、S22 ≦-6dB の、優れた性能の超広帯域 LNA

[Low Noise Amplifier]の設計を達成(図 22/23) することができた。

3dB 帯域 2GHz-34GHz、帯域内の利得偏差約 0.5dB、約 NF≦5dB の周波数特性が平坦で且 つマイクロ波~ミリ波帯に及ぶ超広帯域アンプの設計 を達成(図 20) することが出来た。

NF最適化の	条件 Fig.21
员通化	
パント設定<名前/スタート/ストップ/点数/領域>	ゴール設定くゴール式/ハンド/重み>
BandB 14G 24G Auto Freq BandA 2G 14G Auto Freq BandC 24G 30G Auto Freq BandD 45G 45G Auto Freq BandE 7G 29G Auto Freq	DE203C21X=04 Bandle 1.0 DE203C21X=03 Bandle 1.0 DE203C21X=02 Bandle 1.0 DE203C21X=12 Bandle 1.0 DE1004(PT21X)=3 Bandle 1.0
新規 削除 変更 有/無 全消去 索子設定<素子名/下限/抑期値/上限>	新規 削除 変更 有/無 全消去 最適化式設定
Act 3 10.344 15 Act 3 16.1 30 Ach 5.167 7 Ach 50 200.38 300 Zet 150 200.38 300 Zd 30 8306 140 Rt 20 50 70 ✓	
新規 削除 変更 有/黒 ¾def-> 全消去 最適化が(?** 最大最小設定 最大最小設定 #	新規 郵除 変更 有/無 全消去 解析手法 © Sバラレ-9 ○ ハーモニック・ハランス ○ A ○ トランパシント ○ 保邦応答法形 ○ DC
最適化 閉じる キャンセル カーフ・フィット	オフジョン

4.考察

- 周波数帯域 30GHz を超える超広帯域 アンプ を達成する分布形増幅器の設計 手法を確立することができた。
- (2) 前報の「各種パラメータの変換・導出」を 適用することにより、分布増幅器に適

用する増幅素子[HEMT 他]の基 本パラメータ [S パラメータ/ノイズ・パラメ -タ] が増幅器の帯域を満たさな いときにも、所要の帯域の設計・ 解析に適した新たな近似基本パ ラメータを準備することができ、ま たその基本パラメータは分布増幅器 の設計・解析に適切に機能する ことが判った。

 (3) 本設計の定量的な解析・評価の 結果として、分布形増幅器を適 用することによって、3dB 周波 数帯域 30GHz を超え、利得

10dB以上で偏差1dB、NF≦3~4dBの最良の広帯域低雑音アンプを設計できる。

(4) 実際に5段の分布増幅器を SNAP で設計・解析してみた結果、性能解析も安定に機能 するし、4段増幅器の回路定数を一度に8パラメータ以上変数として性能の最適化を実施 した場合にも安定且つ短時間(最長数分)に良好な性能最適化を達成してくれること を確認し、SNAPの柔軟・迅速・広範囲な適用領域・万能性を改めて強調したい。

-以上-