FM 強電界で相互変調歪の少ない直線性に優れたトランスフィードバック方式

のトランシ[゙]スタ FM アンフ[°]と FET FM アンフ[°]の設計及び性能比較、並びに SNAP

上で非線形解析/雑音解析を一緒に実施する手法の紹介

S-NAP App30 copyright© MEL Inc. 2019

1. 序文

欧米の80MHz ~108MHzのFM 帯域で強電界における混変調歪の少ないFM 前置増幅器 を開発するため、最適と思われる新しい増幅素子のデバイス・データを半導体メーカの web site か ら見つけて所要のファイルを作成して関連の Library に登録し、回路シミュレーションの非線形解析と 同時に雑音解析の動作を可能とする手法を説明する。これを適用してアンプの入出力の直線 性を向上するトランス負帰還方式のベース接地/エミッタ接地両FM アンプとゲート接地FM アンプの性能 比較[相互変調歪/ゲイン/NF等]を行い、FM アンプの最適設計を見出す。

2. 概要

- (1) Ic max=60mAの小電力トランジスタ[添付ファイル参照]のPhilips 社デュアル・エミッタ・トランジスタBPF94 のデバイスパラメータ(非線形解析に使用するスパイスモデル/雑音パラメータ)を web site から抽出 し、非線形解析の回路シミュレーションを適用できるように、シミュレーション解析環境を構築する。
- (2) 同様に Id max=30mA の小電力 MOS FET [添付ファイル参照] の Philips 社デュアル・ゲート FET BF998 のデバイスパラメータ(非線形解析に使用するスパイスモデル)を web site カンら抽出し、シ ミュレーション解析環境を構築する。
- (3) 開発した Noise Model に Philips 社の BF998 のデータを適用して雑音解析に適した雑音 パラメータを作成し、これを S parameter Library に NF Model として登録する。
- (4) トランス負帰還方式のベース接地/エミッタ接地の両 FM アンプを設計し、小信号におけるゲイン
 /NF性能のS パラメータ解析と強電界に対する Harmonic Balance 解析とを適用する。
- (5) 通常方式(フィードバック無し) / トランス負帰還方式の両ゲート接地 FM アンプを設計し、小信号におけるゲイン/NF 性能の S パラメータ解析と強電界に対する Harmonic Balance 解析とを適用する。
- (6) 最後に、(4)、(5)で求めた結果を一覧表に纏めて FM 強電界に適した最適なプリアンプを 分析・評価する。
- 3. 回路 Simulation 環境の構築
- 3.1 デュアルエミッタ・トランジ スタ BFG94 のシンホ ル作成とライブ ラリー登録

 デュアルエミッタ・トランジ スタ BFG94 (fr≒6GHz)のスパ イス・モデル(真性素子と寄生素子で構成: 図 1 参照)を web site から抽出し、SNAP のフォーマットに改良して SNAPWV3¥Lib¥NonLinear に RF_PhilipsBFG94_DE(図 2 参照)を登録する。次に web site から抽出した雑音パ ラメータ

を BFG94_NF_Model(図 3 参照)として SNAPWV3¥Lib¥Sparam に登録する。

 次に、回路エディタ上に表記するためのデ ュアルエミッタ・トランシ、スタのシンホ、ル ExpbjtnDE(図5参照)を、シンボルエディタ

*FREQUENCY RANGE : 0.01~3GHz VAR = 3.28032E+000 .SPICE IKR = 1.00000E+001 SUBCKT BFG94_DE 1 2 3 4 ISC = 1.04297E-015 Lb 5 6 1.5n Le 8 9 .5n NC = 1.18993E+000 RB = 1.00000E+001 + L1 2 5 .025n L2 1 7 1.19n IRB = 1.00000E - 006Fig. 2 RBM = 1.00000E + 001L3 3 9 1.2n RE = 7.63636E-001 Ccb 5 7 16f Cbe 5 9 182f RE 9 10 1m + RC = 9.00000E+000 + EG = 1.11000E + 000XTI = 3.00000E+000 + L3 10 4 1.2n CJE = 2.03216E-012 + Q1 768 BFR91Acore 1 VJE = 6.00000E-001 .MODEL BFR91Acore NPN IS = 1.32873E-015 + MJE = 2.90076E-001 BF = 1.02000E+002 + TF = 6.55790E-012 + + XTF = 3.89752E+001 + NF = 1.00025E+000 VTF = 1.09308E+001 + + VAF = 5.19033E+001 ITF = 5.21078E-001 + IKF = 8.15511E+000 + + ISE = 1.39029E-014 CJC = 1.00353E-012 + + NE = 1.51292E+000 + VJC = 3.40808E-001 + BR = 1.76953E+001 + MJC = 1.94223E-001 NR = 9.94038E-001 .ENDS

を使用して作成し、回路エディタで作成したマクロ Dual Emitter(図4参照)の電気的接続と 該シンボルとを設定機能にて関連付ける。

3.2 デュアルケート FETBF998 のシンボル作成とライブ ラリー登録

 デュアルゲート FET998 (800MHz で NFmin=1.0dB) のスパ イス・モデ ルを web site から抽出し、 SNAP のフォーマットに改良して SNAPWV3¥Lib¥NonLinear に RF_PhilipsBF998_n (図 6 参照)を登録する。

ſ	.SPICE			
	SUBCKI BF998n	1234	I =0.12N	.MODEL ZENER D BV=10 CJO=1.2E-12 RS=10
	.SUBCKT BF998n L10 L20 L30 L40 L11 L21 L31 L41 C13 C14 C23 C24 D11 D12 D21	1 2 3 4 1 10 2 20 3 30 4 40 10 11 20 21 30 31 40 41 10 30 10 40 10 20 20 30 20 40 42 11 42 11 42 11	L=0.12N L=0.12N L=0.12N L=0.12N L=1.20N L=1.20N L=1.20N C=0.085P C=0.085P C=0.085P C=0.005P C=0.005P ZENER ZENER ZENER	.MODEL ZENER D BV=10 CJO=1.2E-12 RS=10 .MODEL GATE1 + NMOS LEVEL=3 UO=600 VTO=-0.250 NFS=300E9 TOX=42E-9 + NSUB=3E15 VMAX=140E3 RS=2.0 RD=2.0 XJ=200E-9 THETA=0.11 + ETA=0.06 KAPPA=2 LD=0.1E-6 + CGSO=0.3E-9 CGDO=0.3E-9 CBD=0.5E-12 CBS=0.5E-12 .MODEL GATE2 + NMOS LEVEL=3 UO=600 VTO=-0.250 NFS=300E9 TOX=42E-9 + NSUB=3E15 VMAX=100E3 RS=2.0 RD=2.0 XJ=200E-9 THETA=0.11 + ETA=0.06 KAPPA=2 LD=0.1E-6 + CGSO=0.3E-9 CGDO=0.3E-9 CBD=0.5E-12 CBS=0.5E-12 .ENDS * BE008
	D21	32 31	ZENER	* UI 77U
	RS MOS1 MOS2	10 12 61 41 21 31	R=100 11 12 GATE1 L=1. 61 12 GATE2 L=2.	1E-6 W=1150E-6 Fig. 6
	RS MOS1 MOS2	10 12 61 41 21 31	R=100 11 12 GATE1 L=1. 61 12 GATE2 L=2.	1E-6 W=1150E-6 DE-6 W=1150E-6

 次に、回路エディタ上に表記するためのデュアル エミッタ・トランジスタのシンボル Nlnmos2n(図8参照) をシンボルエディタを使用して作成し、回路エディタで 作成したマクロ Dual Gate (図7参照)の電気接続 図と該シンボルを設定機能にて関連付ける。

3.2 Philips BF998 の Noise Model の作成と Library への登録

 Philips BF998 のデータシートのNF特性(f=800MHzでNFmin=1.0dB)およびSpice Model のデ^{*} パイスⁿ ラメータを小生が開発した Noise Model [M.W.Pospiezalski の FET 雑音モデ^{*} ル (ケ^{*} ート雑音温度 Tg とト^{*} レイン雑音温度 Td で雑音^{n^{*}} ラメータを規定)に寄生素子(Package 等に 因る)を付加した雑音^{n^{*}} ラメータを導出できるように改良し、Si FET (接合型 及び MOS 構 造)についてはケ^{*}ート雑音温度 Tg を素子の環境温度に等しいと仮定できる。(低雑音である HEMT/GaAs に対しては Tg を精確に算出し NF の計算精度を向上する)]に適用して、

			F	ig. 9
型番. [Name]	V _{DS} [V] : パイアス	I _{DS} [mA] : パイアス [at VG2S=4V]	to [C. deg.]:雰囲気温度	To [K. deg.]:雰囲気絶対温度
BF998 [Philips]	8	10	27	300
fo [GHz]: NF 測定周波数	f _L [GHz] : Lower Freq Limit	f _H [GHz] : Higher Freq Limit	IΓI : Γ _{opt} [MAG] at f ₀	θ_0 : Γ_{opt} [ANG] at f_0
0.8				
P ₀ : Γ _{opt} parameter by (708)	$Q_0: \Gamma_{opt}$ parameter by (709)	U ₀ : Γ _{opt} parameter by (710)	R _{op} [ohm] : Γ _{opt} by (711)	(Ref.1 : Cgs [pF]) by (718)
 	A.: S [ANG]	De : S. parameter by (638)	E. S. parameter by (630)	E. S. parameter by (640)
SUHI: SUH [MAG]	θ1#: S11 # [ANG]	D _H ; S ₁₁ parameter by (638)	E _H : S ₁₁ parameter by (639)	FH: S11 parameter by (640)
$R_{T}[\Omega]:R_{1}=gis/(b_{1}^{2}+g_{2}^{2})$ at 100MHz	Cigs [pF]: Gate1の入力容量	 LT [nH]:(654)計算の入力インダウタンス	IS _{22 L} I : S _{22 L} [MAG]	θ _{2L} : S _{22 L} [ANG]
15	2.1	0		
-L : S ₂₂ parameter by (642)	M _L : S ₂₂ parameter by (643)	N_L : S_{22} parameter by (644)	$\mathbf{g}_{\mathbf{i}}[S] = \mathbf{g}_{\mathbf{o}s}$: h \mathcal{U} (1) \mathbf{i} (S)	Cds [pF]:Output Cap by(658)
			0.0001	
π	gmo[S]: yg[大きさ]=gg	$\omega_c = 2\pi f_c[f_c]遮断周波数](511)計算$	w:(537)計算値:f ₀	v:(538)計算値
3.14159	0.025	11904761905	0.422229696	0.0015
Fo [dB]: 最小 NF	Fo[真数]: 最小 NF	A:(533)計算値	B:(534)計算値	K,=1.0:ゲート雑音温度係数
1	1.258925412			1
参考.2 Kal:(535)計算值	Kd:(540)計算值:残留 <u>AF。</u> = 0.4dB		T。ドレイン雑音温度 [T。=T。K。	R _{R0} [Ω]:(645)計算の入力抵抗
	20.37428634	300	6112.285903	
gmo[S]:相互コンダクタンス	R _T [ohm]:総合抵抗	L _T [nH]: 入力インダウタンス	ga[S]:出力コンダクタンス	π
0.025	15	0	0.0001	3.14159
ω_c=2πf_c[f_c:遮断周波数]	Kェゲート雑音温度係数	Ka:ドルイン温度係数	Cgs [pF] :入力容量	R_n /50 : Normalized R_n
11904761905	1 	20.37428634	2.1	0.365197716
I[GHZ]:計异向波叙	0 [Kad]:計昇再向波数 214150000	Xop [onm]:(520)計异10	₩:()3/)計昇10 0.036380356	V: \038后T异1世
0.05	314139000 - 22 =100	1515.702045	0.020369330	U.UUID
R _{op} [Ω]:(522)計昇1值	Z _{op} "[ohm]":計昇	G _n [S]:(510)計昇1値	R _n [Ω]:(523)計昇値	R _n [S]:(527)計昇10
3251.473781	12809018.14	1 4 I XXDE-UD		10 05000500
H	E supp. E. I. (d)		18.20020500	18.25988582
いり、(JAY-3月1日月、1月日 西F ₀ =U.4dB 1 1000400147	F₀ [dB] : 最小値	$r_{op} = R_{op}/50$	18.26020506 x _{op} = X _{op} /50 [常に: x _{op} >0]	18.25988582 D:(403)計算値
1.109269347 1.109269347	F₀ [dB] : 最小値 0.450370123	$r_{op} = R_{op}/50$ 65.02947562	18.26020506 x _{op} = X _{op} /50 [常に: x _{op} >0] 30.31525286	18.25988582 D:(403)計算値 5278.906207
1.109269347 A:(404)計算値 5146.847255	F ₀ [dB]:最小値 0.450370123 B:(405)計算値[常に>0]	r _{op} = R _{op} /50 65.02947562 IΓ _{opt} I: Γ_{opt}[大きさ]: (406)計算値	18.20020506 x _{op} = X _{op} /50 [常に: x _{op} >0] 30.31525286 Г _{opt} [角度]:(407)計算値	18.25988582 D:(403)計算値 5278.906207 Г_{ерf}[角度](A<0:角度+180)
1.109269347 1.109269347 A:(404)計算値 5146.847255	F ₀ [dB]: 最小値 0.450370123 B *(405) 計算値[常に >0] 60.63050572	r _{op} = R _{op} /50 65.02947562 IF _{opt} I:F _{opt} [大容]:(406)計算值 0.9750513	18.20020500 X _{op} = X _{op} /50 [常に: x _{op} >0] 30.31525286 F _{opt} [角度]:(407)計算值 0.674920815	18.25988582 D:(403)計算値 5278.906207 Г_{ept}[角度](A<0:角度+180) 0.674920815
1.109269347 1.109269347 A:(404)計算値 5146.847255 周波数 (GHz)	F ₀ [dB] : 最小値 0.450370123 B :(405) 計算値[常に >0] 60.63050572 F ₀ [dB] : NF 最小値	r _{op} = R _{op} /50 65.02947562 IF _{opt} I:F _{opt} [大客さ]:(406)計算値 0.9750513 IF _{opt} I:F _{opt} [MAG]	18.2022500 x _{op} = X _{op} /50 [常に: x _{op} >20] 30.31555286 F _{opt} [角度] :(407)計算值 0.674920815 Г_{opt}[ANG] (角度)	18.25988582 D:(403)計算値 5278.906207 F_{ept}[角度](4<0:角度+180) 0.674920815 R_n /50:正規化 R_n
1.109269347 A:(404)計算値 5146.847255 周波数 (GHz) 0.05	F ₀ [dB]:最小値 0.450370123 B :(405)計算値[常に >0] 60.63050572 F ₀ [dB]:NF 最小値 0.45	r _{op} = R _{op} /50 65.02947562 IF _{opt} I:F _{opt} [大志さ]:(406)計算值 0.9750513 IF _{opt} I:F _{opt} [MAG] 0.98	18.2002050 x _{op} = X _{op} /50 [常に: x _{op} >0] 30.31525866 F _{opt} [角度] :(407)計算值 0.674920815 Г_{opt}[ANG] (角度) 0.67	18.25988582 D:(403)計算値 5278.906207 Г_{ерt}[角度](A<0:角度+130) 0.674920815 R_n /50 :正規化 R _n 0.37
1.109269347 A:(404)計算値 5146.847255 周波数 (GHz) 0.05 0.07	F ₀ [dB]:最小値 0.450370123 B :(405)計算値[常に >0] 60.63050572 F ₀ [dB]:NF 最小値 0.45 0.45	r _{op} = R _{op} /50 65.02947562 IF _{opt} I:F _{opt} [大客答]:(406)計算值 0.9750513 IF _{opt} I:F _{opt} [MAG] 0.98 0.97	18.2002050 x _{op} = X _{op} /50 [常に: x _{op} >0] 30.31525286 F _{opt} [角度] :(407)計算值 0.674920815 F_{opt}[ANG] (角度) 0.67	18.25988582 D:(403)計算値 5278.906207 Г₉₂₁[角度](A<0:角度+180) 0.674920815 R_n /≤0 :正規化 R _n 0.37 0.37
1.109269347 1.109269347 A:(404)計算値 5146.847255 周波数 (GHz) 0.05 0.07 0.09 0.09	F ₀ [dB] : 最小値 0.450370123 B :(405) 計算値[常に >0] 60.63050572 F ₀ [dB] : NF 最小値 0.45 0.46 0.48	r _{op} = R _{op} /50 65.02947562 IF _{opt} I:F _{opt} [大客答]:(406)計算值 0.975C513 IF _{opt} I:F _{opt} [MAG] 0.98 0.97 0.96	18.20020506 x _{op} = X _{op} /50 [常に: x _{op} >0] 30.31525286 Γ _{opt} [角度] :(407)計算値 0.674920815 Γ_{opt}[ANG] (角度) 0.67	18.25988582 D:(403)計算値 5278.906207 Г_{egt}[角度](A-0:角度+180) 0.674920815 R_n /50 :正規化 R _n 0.37 0.37
1.109269347 1.109269347 A:(404)計算値 5146.847255 周波数 (GHz) 0.05 0.07 0.09 0.11	F ₀ [dB]: 最小値 0.450370123 B :(405) 計算値[常に ≥0] 60.63050572 F ₀ [dB]: NF 最小値 0.45 0.46 0.48 0.48	r _{op} = R _{op} /50 65.02947562 Ir _{opt} I: r _{opt} [大志さ]: (400)計算值 0.9750513 Ir _{opt} I: r _{opt} [MAG] 0.98 0.97 0.96	18.20020506 Xop = Xop/50 [常に: xop >0] 30.31525286 Fopt[角度] :(407)計算値 0.674920815 0.67 9 0.67 0.95 1.22 1.49	18.25988582 D:(403)計算値 5278.906207 Г_{egt}[角度](A<0:角度+180) 0.674920815 R_n /50 :正規化 R _n 0.37 0.37 0.37
1.109269347 1.109269347 A:(404)計算値 5146.847255 周波数 (GHz) 0.05 0.07 0.09 0.11 0.15	F ₀ [4B]:最小值 0.450370123 B :(405)計算值[常に >0] 60.63050572 F ₀ [4B]:NF 政小值 0.45 0.46 0.48 0.49 0.51	r _{op} = R _{op} /50 65.02947562 Ir _{opt} I: r _{opt} [大志さ]: (400)計算值 0.975C613 Ir _{opt} I: r _{opt} [MAG] 0.98 0.97 0.96 0.95 0.94	18.20020500 Xop = Xop/50 [常に: xop >0] 0.31525286 Γopt[角度] :(407)計算值 0.674920815 Γopt[ANG] (角度) 0.67 0.95 1.22 1.49 1.76 2.02 	18.25988582 D:(403)計算値 5278.906207 0.674920815 R _n /50:正規化 R _n 0.37 0.37 0.37
1.109269347 1.109269347 A:(404)計算値 5146.847255 周波数 (GHz) 0.05 0.07 0.09 0.11 0.13 0.13 0.3	F ₀ [dB] : 最小値 0.450370123 B :(405) 計算値[常に >0] 60.63050572 F ₀ [dB] : NF 最小値 0.45 0.46 0.48 0.49 0.51 0.51	r _{op} = R _{op} /50 65.02947562 IF _{opt} I:F _{ept} [大客首]: (406)計算(値 0.9750513 IF _{opt} I:F _{ept} [MAG] 0.98 0.97 0.96 0.95 0.94 0.94 0.95	18.20020506 Xop = Xop/50 [常に: xop >0] 30.31525286 Copt[角度] :(407)計算值 0.674920815 Copt[角度] :(407)計算值 0.67 0.67 0.95 1.22 1.49 1.76 2.03 4.02	18.25988582 D:(403)計算値 5278.906207 5 278.906207 0.674920815 R _n /50:正規化 R _n 0.37 0.37 0.37 0.37 0.37 0.37
10.02×4757.95 46,00443 1.109269347 A:(404)計算値 5146.847255 周波数 (GHz) 0.05 0.07 0.09 0.11 0.13 0.15 0.3 0.5	F₀ [dB]:最小値 0.450370123 B :(405) 計算値[常に >0] 60.63050572 F₀ [dB]:NF 最小値 0.45 0.46 0.48 0.48 0.49 0.51 0.52 0.63	r _{op} = R _{op} /50 65.02947562 IF _{opt} I:F _{opt} [大客首]: (406)計算(値 0.9750513 IF _{opt} I:F _{opt} [MAG] 0.98 0.97 0.98 0.97 0.96 0.95 0.94 0.93 0.93 0.78	18.2022500 $x_{op} = X_{op}/50 \ [\#c; x_{op}>0]$ 30.31525286 $\Gamma_{opt}[\square [\square] : (407)] \ddagger] \# [\square]$ 0.674920815 $\Gamma_{opt}[ANG] (\square B \underline{B})$ 0.67 0.95 1.22 1.49 1.76 2.03 4.07 6.674	18.25988582 D:(403)計算値 5278.906207 Foge[角度](A<0:角度+180) 0.674920815 R _n /50:正規化 R _n 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
	F ₀ [dB]:最小值 0.450370123 B :(405)計算值[常に >0] 60.63050572 F ₀ [dB]:NF 最小值 0.45 0.45 0.46 0.48 0.49 0.51 0.52 0.63 0.78 実測値を適用:1.00	r _{op} = R _{op} /50 65.02947562 IF _{opt} I:F _{opt} [大客首]: (406)計算(値 0.9750513 IF _{opt} I:F _{opt} [MAG] 0.98 0.97 0.98 0.97 0.995 0.94 0.93 0.93 0.86 0.78 0.97	18.2022506 $x_{op} = X_{op}/50 \ [\#c; x_{op} > 0]$ 30.31525286 $\Gamma_{opt}[\beta \bar{g}] : (407) \bar{f} \bar{f} \bar{g} \bar{d}$ 0.674920815 $\Gamma_{opt}[ANG] \ (\beta g)$ 0.674920815 <	18.25988582 D: (403)計算値 5278.906207 Г_{ерt}[角度](A<0:角度+180) 0.674920815 R_n /\$0 :正規化 R _n 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

50MHz ~ 1GHz に亘る広帯域で雑音パラメータ [最小雑音:NFmin/NFminを与える電源インピ -ダンス: Γ_{opt} /等価雑音抵抗:Rn]を自動計算(図9参照)する。[Excel を使用したこの Noise Model の自動計算シートを添付]

- ② この Noise Model を適用して BF998_NF_Model(図10参照)を作成し、SNAPWV3 ¥Lib¥Sparam に登録する。この NF_Model を使用すると近似的に NF を解析すること ができる。
- 4. トランス負帰還方式のトランジ^{*}スタ FM アンプの設計と性能評価
- 4.1 エミッタ接地アンプの設計と解析
- Philips BFG94 のトランジ スタをエミッタ 接地で採用し、トランスを使用してコレ クタ出力の一部を負帰還させ、強電 界でのアンテ受信電力(以後、単に高 レベルという)の入力に対する電力 利得(以後、単にケインという)の 直線性を向上した FM アンプの回路 設計を図11に示す。

②低入力レベル (-50dBm) におけるゲ イン/NF を S パラメータ解析した結果を図12に示す。信 号名を FM と定めポート1に割り付けて周波数 10MHz~210MHz の周波数範囲で S11 (入力 反射係数)/S21(順方向電力利得)/NF(雑音)の特性を求めた。表示式では SQRT(NF[02]) と記述して S11/S21 は 20log で NF は 10log で表示している。 ゲ インは 88MHz~108MHz

の帯域で 9dB 以上得られているが、入力の整合は S11≧-3dB と整合が取れていない。

- ② Harmonic Balance 解析を利用して入出力電力の非線形解析を行い、隣接入力信号2波 (同一レベルの f₁=100MHz/f₂=102MHz)の相互変調歪における第二次高調波 IM2 (f_{IM2}=2f₁-f₂=104MHz/同様に f_{IM2}=2f₂-f₁=98MHz)と第三次高調波 IM3 (f_{IM3}=3f₁-2f₂=106MHz/同様に f_{IM3}=3f₂-2f₁=96MHz)のレベルを求める。
- ③ 表示式については、Y 軸において回路図上に表記された入力信号 Va と出力信号 Vo を選び、解析した信号を電力表示するために dBm(AC[Va],50) と dBm(AC[Vo])と記述する。X 軸に対しては Amp[dBm](101)を選択し、Z 軸については7-リェ解析の次数として 2 (f1)、3 (f2)、4 (f1M2)、5 (f1M3) を選ぶ。(図13参照)

- ④ 信号を正しく電力表示するためにグラ7→スカラ表示→線形表示→10logを選択する。さらに ポート1に割り付ける信号は Twotone(任意名称)と名付け、振幅を-20dBm(仮置き)、2 波 の振幅比率 V2/V1=1、周波数 1: f1=100MHz、周波数 2: f2=102MHz に選ぶ。[2 波 の周波数差は 1MHz~3MHz が好ましい](図13参照)
- ⑤ ハーモニック・バランスの解析については、信号を「スィープする」を選び、HB スィープ設定はスィープ 信号名をTwotoneに、パラメータをAmpに選び、範囲をスタート値-40dBmからストップ値+10dBm の 50dBに設定する。ストップ値は実際にハーモニック・バランス[Harmonic Balance:以後、HB と 略称する]が収束する最大値に設定すると良い。更に、ステップは対数分割モート、(信号入力が dBm の場合には)を選びステップ数は 51 又は 101(奇数)が好ましい。(図14参照)
- ⑥ 電力 HB の諸設定については、Harmonics において、第一信号高調波次数を2に、第 2信号高調波次数を1に選んで IM2[f_{IM2}=98MHz]、IM3 [f_{IM3}=96MHz]のスペクトラム を各1つに絞り解析結果の表示をシンプルにして見易くする。入力信号フーリェ次数を高々10 に設定して解析精度の向上並びに解析収束の安定度の両立を図る。(図14参照)

⑦ HBの解析結果を図 14 に示す。

入力信号Vaの入力レベルに対する第二次高調波歪IM2と第三次高調波歪IM3の変化が判り、 入力が+5dBmを越えるとIM3/IM3が急激に増大して相互変調歪が悪化する。 各回路の詳細比較分析は後章にて詳述する。

4.2 ベース接地アンプの設計と解析

① 図15に示すように、入出力の直線性に優れるベース接地回路を採用すると共に、トランスを 使用してコレクタ出力の大半を負帰還させて更に直線性を向上する。入出力のフィルタ回路によ って適切な周波数選択性をもたせると同時に信号源および負荷との整合性を高める。

② 入力信号の低レベル(-50dBm)における S パラメータ解析(解析条件は前述の図 12 と同様)を行い、 ゲイン/NF の性能を求める。解析結果は図16に示す通り、88MHz~108MHz の

FM 受信帯域に亘って $f' l \ge 3.5$ dB、NF ≤ 2.5 dBの良好な性能を得ると共に、入力の整合も良好であることが分る。

- ③ なお S パラメータ解析では、雑音設定において、接続ポートをポート1とし、「雑音指数を計算」 を選び、NF(NF_Model を使用した近似解析)を求める。
- ④ 次に隣接2波(f1=100MHz/f2=108MHz)を使用した相互変調歪を前述と同様な条件でHB解析する。HB スィープ範囲のストップ値はHB解析が収束する最大値の+15dBm に選ぶ。解析結果は図17に示すように、入力信号レベルが+10dBm 前後からIM2とIM3が 急速に増大し、相互変調歪が悪化する。[IM2とIM3 が重なるのを避けて2図に分けた]

5. ゲート接地 FET-FM アンプの設計と性能評価

- ト・レイン電流が比較的に大きい(I_{D max}=30mA) デュアルゲート MOS FET Philips BF998 を使用し、入出力の直線性に優れたゲート接地を採用した FM アンプの設計回路を図18に示す。 ゲート接地回路は入力インピーダンスが低いので簡単な回路を使用して信号源と整合を取ることが出来る。
- ② Sⁿ ラメータ解析の結果を図19に示す。88MHz~108MHzの受信帯域をシャープに形成する 高選択性ならびに、ゲイン≧5.5dB、NF≦2.5dBの良好なアンプ性能を得ることが出来た。

^{5.1} 負帰還無しアンプの設計と解析

- ③ 隣接2波(f1=100MHz/f2=108MHz) を使用した相互変調歪を前述と同様な 条件で HB 解析した。HB スィープ範囲の ストップ 値は HB 解析が収束する最大値の 0dBm に選ぶ。
- ④ 解析結果は図20に示すように、HB 解 析が収束する 0dBm 以下の入力レベルに おいて、IM2、IM3のレベルが相対的に小 さく、相互変調歪は比較的に良好である ことが分る。
- 5.2 トランス使用負帰還方式 FM アンプ
- FM アンプの設計回路を図21に 示す。 ドレイン電流が比較的に大きい デュアルゲート MOS FET Philips BF998 を使用し、入出力の直線性 に優れたゲート接地を採用し、且つ トランスを使用してドレイン出力の大半 ゲート入力に負帰還させてその入出 力の直線性を更に向上させている。 負帰還ゲート接地回路は、ドレインから ゲート入力へ帰還が掛かるので、 信号源とアンプの整合が良好である。

- ③ S パラメータ解析の結果を図22に示す。
 88MHz~108MHzのFM受信帯域を高い 周波数選択性で適切に切り出すと共に、ゲ イン≧3.5dB、NF≦1.5dBの良好なアンプ性能 を達成している。
- ③ 隣接2波(f1=100MHz/f2=108MHz)
 を使用した相互変調歪を前述と同様な条
 件でHB解析した。HB スィープ範囲のストップ
 値はHB解析が収束する最大値の+5dBm
 に選ぶ。

に関する総合的な性能比較を後章にて 詳述する。

6. 各方式 FM アンプの性能について総合比較

	各I	T	able 1		
ا ت		負帰還トラン	ジスタ方式	ゲート接地FET方式	
1.1		エミッタ接地	ベース接地	帰還無し	負帰還
	消費電力	50mA×9V	44mA×9V	17mA×12V	
小信号	ケイン(dB)	9.0	3.5	5.5	3.5
入力	NF(dB)	3.0	2.5	2.5	1.5
ኬፈር	5dBm	-20	-40		-45
IIVIZ	-10 dBm	-52	-70	-71	-78
IMS	5dBm	-25	-48		-55
IIVIO	-10 dBm	-61	-82	-80	-93
	総合性能	Δ	0	○?	⊚

上記の表1に示すように、トランス使用負帰還方式のゲート接地 FM アンプの性能が総合的に優れ ていることが判る。特に、この方式は強電界の受信信号に対して相互変調歪が小さいと同 時に低雑音であることが特長である。全般的に FET 方式はトランジスタ方式に比べて、消費電 力が小さい割合には相互変調歪が小さく、強電界における混変調に強いことが明らかにな った

7. 考察

① NF Modelを設計回路に加えて S パラメータ解析並びにハーモニック・バランス(HB)解析を一緒に実 施できることは大きな利点であり、強電界の受信信号(東京タワーの送信所付近は FM 放送と TV 放送間の混変調を生じる地域であり、場所によっては 0dBm から+10dBm の強電界で 本解析に近い IM2/IM3 が観測される)に対して相互変調歪とアンプの小信号性能(NF/ Gain)を同一回路で解析できることは SNAP 回路 Simulator の大きな特長である。

- ② NF-ModelがHB解析になんらの影響(支障)を及ぼさないことも確認することが出来た。 小生が開発した Noise_Model(Excel 自動計算シート)は FM 帯/TV 帯からマイクロ波帯に渡っ て柔軟に適用できる便利なものと考えている。
- ③ FET とトランジスタの両方に HB 解析を適用した感触としては、入出力のインピーダンスが比較 的低いトランジスタの方が高レベルまでその解析が収束し易いことが判明した。

- ④ 本解析結果は、欧州並びに日本での Field/Test において、良好な対応付けと優れた受信 性能を確認しており、SNAP の実用性/実践能力を検証できたと理解している。
- ⑤ このような FM プリアンプの自動車受信への適用に際しては、適用されるアンテナ(ガラスアンテナや プレート状アンテナ他)のインピーダンスが 50Ω或いは 75Ωから大幅にずれていることが多い。その 際には受信アンテナと FM プリアンプのインピーダンス整合を精確に取らないと、NF/IM2/IM3 などの性能が実際と異なる状況になることは注意すべき点である。
- ⑥ 開発するアンプについて、HB 解析と S パラメータ解析を上手に組み合わせて回路の特性・性能を定量的に把握することは、開発期間の大幅短縮と開発製品の性能・品質向上に大きく寄与すると同時に、製品の戦略(企画/製造/販売/品質など)に対しても好ましい効果・影響を発揮できると考えている。
- ⑦ 要は SNAP の機能・特徴を適切に理解・把握して、それを巧みに使いこなすようになる ためには、低周波、高周波から小信号、大信号、更にはアンプからフィルタ、逓倍、周波数変 換まで自分なりの工夫と試行を少々加えて、出来るだけ数多くの場面で柔軟に適応して みることが、電子回路設計・開発の上達への早道であると信じている。

-以上-